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Abstract. The leading twist light-cone distributions for transversely polarized ρ-, ρ′- and b1-mesons are re-
analyzed in the framework of QCD sum rules with nonlocal condensates. Using different kinds of sum rules
to obtain reliable predictions, we estimate the 2nd, 4th, 6th and 8th moments for transversely polarized ρ-
and ρ′-meson distributions and re-estimate the tensor couplings fT

ρ,ρ′,b1 . We stress that the results of the
standard sum rules also support our estimate of the second moment of the transversely polarized ρ-meson
distribution. New models for light-cone distributions of these mesons are constructed. Phenomenological
consequences of these distributions are briefly discussed. Our results are compared with those found by
Ball and Braun in 1996, and the latter are shown to be incomplete.

1 Introduction

In this paper, we complete our investigation of the lead-
ing twist light-cone distribution amplitudes (DAs) for the
lightest transversely polarized mesons with quantum num-
bers JPC = 1−− (ρ⊥, ρ′

⊥), 1+− (b1⊥) in the framework of
QCD sum rules (SRs) with nonlocal condensates (NLCs).
These DAs are important ingredients of the “factoriza-
tion” formalism [1] for any hard exclusive reactions in-
volving ρ-mesons. For this reason, the DAs have been
attractive for theorists for a long time: the main points
are presented in [2,3]; a detailed revised version of the
standard approach is in [4], and a generalization to the
next twists is in [5]. The leading twist DA ϕTρ,ρ′,b1(x, µ

2)
parameterizes the matrix elements of the tensor current
with transversely polarized ρ(770)- and ρ′(1465)-mesons
(JPC = 1−−):

〈0 | ū(z)σµνd(0) | ρ⊥(p, λ)〉|z2=0
= ifTρ⊥ (εµ(p, λ)pν

− εν(p, λ)pµ)
∫ 1

0
dxeix(zp)ϕTρ⊥(x, µ2) + . . . , (1)

and the b1(1235)-meson (JPC = 1+−):

〈0 | ū(z)σµνd(0) | b+1 (p, λ)〉∣∣
z2=0

= fTb1εµναβε
α(p, λ)pβ

∫ 1

0
dxeix(zp)ϕTb1(x, µ

2)

+ . . . (2)
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(here dots represent higher-twist contributions, explicitly
defined in AppendixA, see (A.9) and (A.10) and [5]). In
the above definitions, pν and εµ(p, λ) are the momentum
and the polarization vector of a meson, respectively, and
µ2 is normalization point.

In the framework of the standard approach, one should
restrict oneself to an estimate of the second moment 〈ξ2〉 of
the DA to restore its shape1. In other words, the variety of
different DA shapes is reduced to the 1-parameter family
of “admissible” DAs:

ϕ(x; a2) = 6x(1 − x)
[
1 + a2C

3/2
2 (2x − 1)

]
.

This family includes both the asymptotic DA (a2 = 0)
and the Chernyak–Zhitnitsky model [2] for the pion DA
(aπ|CZ

2 = −2/3). For the pion case, one might think it is
rather enough: most of the debates (see [2,6,10–12] and
references therein) about the shape of this DA are con-
cerned just with the value of the coefficient a2 – is it close
to 0 or to a

π|CZ
2 ? In our opinion, advocated since 1986 [6],

the shape of the pion DA is not far from the asymptotic
one [6,7,13,14,8]. Only recently, researchers have tried to
extract the next Gegenbauer coefficient [12] and other pa-
rameters of the pion DA [15] from experimental data. But,
in general, there is no principle to exclude a more rich
structure for a hadron DA. In this case, the standard ap-
proach is definitely out of its applicability range, and one
should use more refined techniques, e.g., the QCD SRs
with NLC.

This work was started in [8] where the “mixed parity”
NLC SR for DAs of ρ- and b1-mesons, the particles pos-

1 We should note in this respect that the standard approach
could not provide a reliable estimate even for the second mo-
ment of DA, see [6–9]
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sessing different P-parities, was analyzed. We concluded
that, to obtain a reliable result, one should reduce the
model uncertainties due to the nonlocal gluon contribu-
tion. Separate SRs for each P -parity channel should be
preferable for this purpose, and here we construct these
“pure parity” SRs for the corresponding DAs. The SR of
this type possesses a low sensitivity to the gluon model
but involves contributions from higher twists2. To con-
struct a refined “pure parity” SR for twist 2 DA, one
must resolve the corresponding system of equations (see
AppendixA). We realize this solution using the duality
transformation, introduced in our previous work [16]. The
negative parity NLC SR for the transversely polarized ρ-,
ρ′-mesons works rather well and allows us to estimate the
2nd, 4th, 6th, and 8th moments of the leading twist DAs.
The positive parity SR for the transversely polarized b1-
meson can provide only the value of the b1-meson tensor
coupling, fTb1 . We suggest the models for these DAs and
check their self-consistency, based upon both “pure” and
“mixed” NLC SR. The DA shape ϕTρ⊥(x) differs notice-
ably from the known one. Finally, we inspect how these
models can influence the B → ρeν decay form factors.

The approach has been grounded in [6,7,17]; the cal-
culation technique is the same as in [7,8]. Therefore, the
corresponding details are omitted below. Some important
features of the NLC SRs approach should briefly be re-
called.

The original tools of NLC SR are nonlocal objects like
MS(z2) = 〈q̄(0)E(0, z)q(z)〉3 or Mµ

V (z) = 〈q̄(0)γµE(0, z)
q(z)〉, rather than constant quantities of 〈q̄(0)q(0)〉 type.
Note that, in deriving the sum rules, one can always make
a Wick rotation and treat all the coordinates as Euclidean:
z2 = −z̃2Eucl < 0. The NLC MS(z2) can be expanded in
the Taylor series over the standard (local) condensates,
〈q̄(0)q(0)〉, 〈q̄(0)∇2q(0)〉, and over “higher dimensions”
(see details of the expansion of different NLCs in [18]).
We have

MS(z2) = 〈q̄(0)q(0)〉 − z̃2

8
〈q̄(0)∇2q(0)〉 + . . . . (3)

So one can return to the standard SR by truncating
this series. But, in virtue of the cut-off, one loses an impor-
tant physical property of the nonperturbative vacuum –
the possibility of vacuum quarks (gluons) to flow through
vacuum with a nonzero momentum kq(g) �= 0. The param-
eter 〈k2q〉, fixing the average virtuality of vacuum quarks,
can be interpreted as a measure of condensate “nonlocal-
ity” λ2q,

〈k2q〉 = λ2q =
〈q̄(0)∇2q(0)〉
〈q̄(0)q(0)〉 =

〈q̄(0) (igσµνGµν) q(0)〉
2〈q̄(0)q(0)〉

[chiral limit] .

The λ2q was estimated from the mixed condensate of di-
mension 5, λ2q ≈ 0.4–0.5GeV2 [19,20]. It is important that

2 As was noted in [4]
3 Here E(0, z) = P exp

(
i
∫ z

0 dtµAa
µ(t)τa

)
is the Schwinger

phase factor required for gauge invariance

its value is of the order of the characteristic hadronic scale,
λ2q ∼ m2

ρ ≈ 0.6GeV2; therefore the nonlocality effect can
be large, and it should be taken into account in QCD SR.
Really, the second term in the expansion (3) of MS(z2)
that is the inverse of the first one in sign becomes of the
order of the first term at |z2| ∼ 1/m2

ρ due to the esti-
mate |λ2qz2| ∼ 1. Moreover, we should take into account
the whole set of

(
λ2qz

2
)n-type corrections, appearing in

the Taylor expansion. These corrections just mainly form
the decay rate of the NLC (MS(z2)). The sensitivity to
this rate is crucial for the DA moment SR: it leads to a
much softer behavior of DA near the end points x = 0, 1
and allows one to extend QCD SR to higher moments
〈ξN 〉 ≡ ∫ 10 ϕ(x)(2x − 1)Ndx, as was shown in [6].

Since neither QCD vacuum theory exists yet, nor
higher dimension condensates are estimated, it is clear
that merely the models of NLC can be suggested (Ap-
pendixB). Here we apply the simplest ansatz to NLC [7,8]
that takes into account only the main effect 〈k2q〉 = λ2q �= 0
and fixes the length of the quark–gluon correlations in
the QCD vacuum: Λ = 1/λq ≈ 0.8 fm [6,7]. This sugges-
tion leads to the simple Gaussian decay for MS(z2), while
the coordinate behavior of other NLCs looks more com-
plicated. Certainly, the single scale of decay for all types
of NLC (see AppendixB) looks as a crude model. But
the model can be rather crude if one deals with SRs only
for the first few moments 〈ξN 〉, because for these integral
characteristics the details of the NLC behavior do not ap-
pear to be very important (see the discussion in Sect. 5).
An alternative case is provided by a special SR [13,14]
constructed directly for the shape of DAs.

Presently the lattice calculations of NLC provide in-
spiring knowledge [21,22] for QCD SR. The latter mea-
surement in [22] confirms the validity of the Gaussian
ansatz for MS(z2) (at a small distance) as well as the
value of the parameter λ2q.

2 “Duality” transformation

To obtain the sum rule, we start with the 2-point corre-
lator Πµν;αβ(q) of the tensor currents Jµν(N)(x) = ū(x)σµν

(z∇)N d(x) (z is a light-like vector, z2 = 0),

Πµν;αβ
(N) (q) = i

∫
d4xeiq·x〈0|T

[
Jµν+(0) (x)Jαβ(N)(0)

]
|0〉, (4)

whose properties were partially analyzed in [3,4,16]. It is
well known that the correlator at N = 0 can be decom-
posed in invariant form factors Π±, [3,4]:

Πµν;αβ
(0) (q) = Π−(q2)Pµν;αβ

1 + Π+(q2)Pµν;αβ
2 , (5)

where the projectors P1,2, obeying the projector-type re-
lations

(Pi · Pj)µν;αβ ≡ Pµν;στ
i Pστ ;αβ

j = δijP
µν;αβ
i

(no sum over i),
Pµν;µν
i = 3, (6)
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are presented in AppendixA. For the general case N �=
0, a similar decomposition involves four new independent
tensors Qi; they appear due to a new vector zα introduced
into the composite tensor current operator,

Πµν;αβ
(N) (q) = Π−(q2, qz)Pµν;αβ

1 + Π+(q2, qz)Pµν;αβ
2

+ K1(q2, qz)Q
µν;αβ
1 + K3(q2, qz)Q

µν;αβ
3

+ Kz(q2, qz)Qµν;αβ
z + Kq(q2, qz)Qµν;αβ

q . (7)

The contributions of DAs, defined in (A.9) and (A.10),
to the different tensor structures in the decomposition (7)
are mixed, see (A.11) and (A.12). The most effective way
to disentangle them in practical OPE calculations is to use
explicit properties of different OPE terms under the du-
ality transformation D̂ (introduced in our previous work
[16]) mapping any rank-4 tensor Tµν;αβ to another rank-4
tensor Tµν;αβ

D = (D̂T )µν;αβ with

Dµν;αβ
µ′ν′;α′β′ =

−1
4

εµνµ′ν′ε
αβ

α′β′ and D̂2 = 1. (8)

Our projectors Pµν;αβ
1 , Pµν;αβ

2 Qµν;αβ
1 , Qµν;αβ

3 , Qµν;αβ
z ,

and Qµν;αβ
q transform into each other under the action of

D̂:

(
D̂P1

)µν;αβ
= Pµν;αβ

2 ,(
D̂Q1

)µν;αβ
= [P1 + P2 − Q3]

µν;αβ
, (9)(

D̂P2

)µν;αβ
= Pµν;αβ

1 ,(
D̂Q3

)µν;αβ
= [P1 + P2 − Q1]

µν;αβ
, (10)(

D̂Qz

)µν;αβ
= −Qµν;αβ

z , (11)(
D̂Qq

)µν;αβ
= [Qq − Qz + Q1 + Q3 − P1 − P2]

µν;αβ
.

We have shown in [16] that all terms in OPE could be
divided into two classes, a self-dual one (D̂XSD = XSD)
and an anti-self-dual one (D̂XASD = −XASD). For exam-
ple, the perturbative term is of ASD type, whereas the
4-quark scalar condensate contribution to OPE is of SD
type.

Below we introduce the following shorthand notation
for the contributions of DAs to the decomposition (7): v0,
v1, and v2 stand for 1−− (ρ⊥, ρ′

⊥), and u0, u1, and u2, for
1+− (b1); see AppendixA for details. For the SD parts of
OPE ui = −vi, and the system of equations simplifies to

Π∓(q2, qz)
2(qz)Nq2

= ∓v0 − v1 − v2,

K1,3(q2, qz)
2(qz)Nq2

= ∓v1 + v2,

Kq(q2, qz)(= −2Kz(q2, qz))
4(qz)Nq2

= v2, (12)

whereas for the ASD parts ui = vi, and we have

Π∓(q2, qz)
2(qz)Nq2

= ∓v0 + v1 + v2,

K1,3(q2, qz)
2(qz)Nq2

= −v1 − v2,

Kz(q2, qz)
2(qz)Nq2

= +v2,

Kq(q2, qz) = 0. (13)

By these formulas, it is possible to determine ρ- and b1-
meson DA contributions of leading and higher twists.

3 The “mixed parity” sum rule

The usual way [2,4] to extract the moments of the function
ϕT(x) appeals to the correlator J(N,0)(q2) of the currents
Jµα(N)(0)z

α and Jµβ(0)(x)z
β defined by

−2in (zq)N+2
J(N,0)(q2) ≡ Πµν;αβ

(N) (q)
(
zνzβgµα

)
=

Π−(q2) − Π+(q2)
q2

(qz)2; (14)

the latter equality in (14) follows from (7) and (A.7) in Ap-
pendixA. This correlator contains the contributions from
states with different parities, Π−(q2) and Π+(q2) (see the
analysis in [4]); therefore, the contamination from the b1-
meson

(
JPC = 1+−) in the phenomenological part of the

corresponding SR is mandatory. The contamination makes
it difficult to reliably extract the meson characteristics
from this “mixed” SR.

The main feature of the theoretical part of J(N,0)(q2)
is the cancellation of the self-dual part, represented by
the 4-quark condensate, in the anti-self-dual expression
(14). The remaining “condensate” parts of (14) contain,
after the Borel transformation, the same five universal ele-
ments ∆ΦΓ (x;M2) as for the ρL- and the π-cases and, be-
sides, an additional gluon contribution ∆Φ′

G(x;M2) (see
AppendixB). This term affects the values of the moments
rather strongly, as was shown in [8]. The contributions
from the different kinds of NLC, ∆ΦΓ (x;M2), are sym-
bolically denoted in the r.h.s. of SR (15), so here we get
rid of the 4-quark condensate which is not known very
well due to a possible vacuum dominance violation. But
the price we pay for this is a high sensitivity to the ill-
known gluon contribution ∆Φ′

G(x;M2).
The method of calculation of the NLC contributions

∆ΦΓ
(
x;M2

)
to the theoretical part of SR is described

in [6–8]. The corrected final results of the calculation are
presented in AppendixB which contains all the needed
explicit expressions of ∆ΦΓ (x;M2) for the simplest phys-
ically motivated Gaussian ansatz. The final SR including
DAs of ρ-meson and the next resonances ρ′ and b1 into
the phenomenological (left) part is as follows:

(
fTρ
)2

ϕTρ (x)e−m2
ρ/M

2
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+(ρ → ρ′) +
(
fTb1
)2

ϕTb1(x)e
−m2

b1
/M2

=
∫ sTb

0
ρmixedT

(
x, s; sTρ , s

T
b

)
e−s/M2

ds

+∆ΦG(x;M2) + ∆Φ′
G(x;M2)

+∆ΦV (x;M2) + ∆ΦT(x;M2), (15)

where sTρ and sTb are the effective continuum thresholds in
the ρ- and b1-channels. Recall again that the variation of
the ill-known part of the gluon contribution ∆Φ′

G

(
x;M2

)
can reduce the second moment significantly [8]. In the pa-
per just mentioned, we suggest the following naive model:
instead of the constant contribution ∆ϕ′

G

(
x;M2) ≡

〈αsGG〉/(6πM2) (as in the standard approach), we put

∆Φ′
G

(
x;M2) = ∆ϕ′

G

(
x;M2) θ (∆ < x) θ (x < 1 − ∆)

1 − 2∆
.

This simulation eliminates end-point (x = 0, 1) effects due
to the influence of the vacuum gluon nonlocality; it is in-
spired by the analysis in [17] and our experience in the
nonlocal quark case. The corresponding SR leads to the
estimate 〈ξ2〉Tρ = 0.329(11) (see Fig. 2a). However, this
value drastically changes, 〈ξ2〉Tρ → 0.231(8), if we take
the local expression ∆ϕ′

G

(
x,M2) unchanged. Therefore,

the estimate 〈ξ2〉Tρ = 0.329 contains a significant model
uncertainty, and the actual value seems to be smaller.

Which prediction for this quantity can be obtained
within the standard QCD SR approach? As one can see
from Fig. 2b (long-dashed line), the value of 〈ξ2〉Tρ can-
not be estimated with a reasonable accuracy, because the
standard SR does not have real stability. Nevertheless, the
authors of [4] bravely deduce an estimate 〈ξ2〉T

ρ [B&B] =

0.27(4). We discuss this attempt in comparison with pro-
cessing other SRs in greater detail in Sect. 5.

4 The “pure parity” sum rules

Using the approach of Sect. 2, we calculate OPE terms
for the Π∓, K1,3, and Kz,q correlators and extract the
contributions to DAs of the ρ- and b1-mesons. This allows
us to write down the SRs for DAs of the ρ- and b1-mesons
separately:(

mρf
T
ρ

)2
ϕTρ (x)e−m2

ρ/M
2
+
(
mρ′fTρ′

)2
ϕTρ′(x)e−m2

ρ′/M2

=
1
2

∫ sTρ

0
ρpertT (x; s)se−s/M2

ds

+∆Φ̃G(x;M2) + ∆Φ̃S(x;M2)

+∆Φ̃V (x;M2) + ∆Φ̃T(x;M2); (16)(
mb1f

T
b1

)2
ϕTb1(x)e

−m2
b1
/M2

=
1
2

∫ sTb

0
ρpertT (x; s)se−s/M2

ds

+∆Φ̃G(x;M2) − ∆Φ̃S(x;M2)

+∆Φ̃V (x;M2) + ∆Φ̃T(x;M2), (17)

where sTρ;b are the effective continuum thresholds in the
ρ- and the b1-meson cases, respectively. The perturba-
tive spectral density ρpertT (x; s) is presented to the order
of O(αs) in [4,8] (AppendixB). Here we also define the
“tilded” functions

∆Φ̃Γ (x;M2) ≡ 1
2
M4∂M2∆ΦΓ (x;M2), (18)

and the whole tensor NLC contribution

∆Φ̃T(x;M2) ≡ ∆Φ̃T1(x;M
2) + ∆Φ̃T2(x;M

2)

− ∆Φ̃T3(x;M
2). (19)

The latter notably differs from the case of the longitudi-
nally polarized ρ-meson due to the opposite sign of the
T3-term, cf. [8]. The theoretical “condensate” part in (16)
and (17) contains five elements obtained from (18) with
the same ∆ΦΓ (x;M2) as for the ρL-meson case, whereas
the self-dual 4-quark contribution ∆Φ̃S(x;M2) is a new
element of the analysis. Note that just this self-dual part
∆Φ̃S(x;M2), entering in the SRs (16) and (17) with dif-
ferent sign provides the different properties of the ρ- and
b1-mesons [16].

For better understanding of the SR properties it is in-
structive to reduce them to the standard version for the
〈ξN 〉-moments. To this end, let us take the limits λ2q → 0,
∆ΦΓ (x,M2) → ∆ϕΓ (x,M2) in (16) and (17) and inte-
grate over x with weights (1 − 2x)N to obtain the local
limit version of the moment SR:(

mρf
T
ρ

)2 〈ξN 〉Tρ e−m2
ρ/M

2

=
1
2

∫ sTρ

0
ρpertT (x; s)se−s/M2

ds − 〈αsGG〉
24π

(
N − 1
N + 1

)

−16π
81

〈√αsq̄(0)q(0)〉2
M2 (4N − 13). (20)

This SR demonstrates a considerably lower sensitivity to
the gluon condensate contribution: the gluon part does
not depend on the Borel parameter M2 at all, and its
relative value is 6 times as low as that in the “mixed”
SR. The r.h.s. of (20) is reduced at N = 0 to the known
expression, see [4], that is not sensitive to the ρ′ contri-
bution, while its nonlocal version analyzed in [16] makes
it possible to analyze the ρ′-meson. For N > 0, the SR
is unstable due to the effect of radiative corrections, and
to obtain the moment estimates we should return to the
nonlocal version, (16).

But the price one pays for this is high: the fidelity
windows of the SRs are significantly reduced. For the ρ-
meson case, the fidelity windows of the Borel parame-
ters M2 shrink to M2 = 0.7–1.15GeV2 (to be compared
with M2 = 0.75–2.25GeV2 in “mixed” SR) and demand
one to take into account the ρ′-meson explicitly. Here we
cannot obtain the ρ′-meson mass from SR (16) because
of the enhanced perturbative spectral density (∼ s; this
means that the differentiated SR has a spectral density
∼ s2 and presumably is not stable at all); instead, we
use the ρ′-meson mass extracted in our previous paper
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Fig. 1a,b. fT
ρ as a function of the Borel parameter M2 obtained from: a the “mixed parity” NLC SR, (15), with s0 = 2.9GeV2;

b the “pure parity” NLC SR, (16), with s0 = 2.8GeV2. The fidelity windows for both figures coincide with the whole depicted
range of M2
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Fig. 2a,b. 〈ξ2〉Tρ as a function of the Borel parameter M2 obtained from: a the “mixed parity” NLC SR, (15), with s0 =
2.9GeV2; b the “pure parity” NLC SR, (16), with s0 = 2.8GeV2. Both kinds of SRs were processed taking the ρ′-meson into
account; the arrows show the fidelity window (for a the window coincides with the whole depicted range of M2). Solid lines
correspond to the optimal thresholds s0, the short-dashed lines on both figures correspond to the curves with a 10%-variation
of s0 a or of χ2

min b. The long-dashed line in b represents the SR of Ball–Braun [4]

on the longitudinally polarized ρ-meson DA [8], mρ′ =
1496 ± 37MeV, rather close to the Particle Data Group
value mρ′ = 1465 ± 22MeV [23].

In the case of the b1-meson, one can analyze only the
SR for the zeroth moment (decay constant fTb1) of the DA
(see Fig. 3), the SRs for higher moments appearing to be
invalid.

5 Processing different SRs
and comparison of the results

We start with considering the results of processing both
types of SRs for fTρ . Its dependence on the Borel parame-
ter M2 obtained from the “mixed parity” NLC SR, (15),
with s0 = 2.9GeV2 is shown in Fig. 1a. Figure 1b shows
fTρ as a function of the Borel parameter M2 obtained from
the “pure parity” NLC SR, (16), with s0 = 2.8GeV2. Both
kinds of SRs are rather sensitive to the ρ′-meson contri-
bution and, for this reason, they were processed taking it
into account (see the numerical results in Table 1). Solid
lines correspond to the optimal thresholds s0; the dashed

lines to the curves with the 10-fold variation of χ2min (this
corresponds approximately to a 5%-variation of s0; for the
definition of χ2 see AppendixC, (C.1)). So one can con-
clude that both types of NLC SRs agree rather well on the
value of fTρ . Note that the presented fTρ is rather close to
the standard estimation fTρ = 0.160(10)GeV [4] and to
the lattice one, fTρLatt(4GeV2) = 0.165(11)GeV [24], and
differs significantly from the result fTρ = 0.140GeV in
[25].

Now we consider the results of processing SRs for the
second moment 〈ξ2〉Tρ . First, we demonstrate the results
of the “standard” approach: 〈ξ2〉Tρ from (3.21) in [4] as a
function of M2 is shown in Fig. 2b by a long-dashed line.
This curve is not stable in M2 at all, therefore the SR
can provide merely a range of admissible values, 0.27 ≤
〈ξ2〉Tρ ≤ 0.4. As is evident from Fig. 2, this wide win-
dow agrees reasonably with both the estimates from the
“mixed” (a) and “pure” (b) NLC SRs.

Note that the authors of [4] dealt with the quantity a2,
the Gegenbauer coefficient in the expansion of DA. The
second moment of DA is trivially connected with this co-
efficient, 〈ξ2〉 = 0.2+(12/35)a2. Using the SR of [4] for a2,
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Table 1. The estimate presented in this cell has been obtained by processing the “mixed parity”
SR established in [4], whereas in the original paper [4] this value amounts to 0.27(4). The moments
〈ξN 〉M (µ2) at µ2 ∼ 1GeV2 (errors are depicted in brackets in a standard manner)

Type of SR fM

(
1GeV2) N = 2 N = 4 N = 6 N = 8

Asympt. WF 1 0.2 0.086 0.047 0.030

NLC SR (16) : ρT 0.157(5) 0.296(20) 0.196(6) 0.132(5) 0.089(4)

NLC SR (15) : ρT 0.162(5) 0.329(11) – – –

B&B SR : ρT 0.160(10) 0.304(40)4 does not work

NLC SR (16) : ρ′T 0.140(10) 0.086(6) 0.010(1) 0.013(1) 0.022(2)

NLC SR (17) : bT
1 0.184(5) does not work

NLC SR (15) : bT
1 0.181(5) 0.144(15) – – –

B&B SR : bT
1 0.175(5) does not work
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0.17

0.18

0.19

0.2

M2 [GeV2]

fT
b1
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0.18

0.19

0.2
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Fig. 3a,b. The curves fT
b1 in M2 obtained from: a the “mixed parity” NLC SR (taking the ρ′-meson into account with fρ′

defined from “pure parity” SR (16)); b the “pure parity” NLC SR (17). The arrows show the fidelity window (for the right figure,
the window coincides with the whole depicted range of M2). Solid lines correspond to the optimal thresholds; the short-dashed
lines on both figures to the curves with the 10-fold variation of χ2

min; the long-dashed line on the right figure corresponds to the
real B&B curve

we obtain the corresponding window, 0.2 ≤ a2 ≤ 0.4, that
leads to the mean value 〈ξ2〉Tρ[Stand] = 0.30 being surpris-
ingly close to our estimate from NLC SRs (see Table 1).
However, Ball and Braun have obtained the erroneous es-
timate a2 = 0.2 ± 0.1 producing, instead, the mean value
〈ξ2〉T

ρ [B&B] = 0.27.
The curves for the next higher moments, whose esti-

mates are presented in Table 1, have fidelity windows and
stability behavior similar to 〈ξ2〉Tρ (M2) in Fig. 2b. Finally,
in Fig. 3, we demonstrate the very good correspondence
between the values of fTb1 obtained in different NLC SRs.

6 DA models and their check

Possible models of DAs corresponding to the moments in
Table 1 are of the form

ϕT,modρ (x, µ2) = 1.382 [ϕas(x)]2

×
(
1 + 0.927C3/2

2 (ξ) + 0.729C3/2
4 (ξ)

)
= ϕas(x)

(
1 + 0.29C3/2

2 (ξ)

+ 0.41C3/2
4 (ξ) − 0.32C3/2

6 (ξ)
)
, (21)

ϕT,modρ′ (x, µ2) = ϕas(x)
(
1 − 0.339C3/2

2 (ξ)

+ 0.003C3/2
4 (ξ) + 0.192C3/2

6 (ξ)
)
, (22)

ϕmodb1 (x, µ2) = ϕas(x)
(
1 − (0.175 ± 0.05)C3/2

2 (ξ)
)
, (23)

where ξ ≡ 1 − 2x, Cν
n(ξ) are the Gegenbauer polynomi-

als (GP), and the norm µ2 � 1 GeV2 corresponds to a
mean value of M2. Recall again that the value of the im-
portant coefficient a2 = 0.29 in (21) is confirmed by three
sources: “pure” NLC SR (16), “mixed” NLC SR (15), and
a mean value from the “mixed” standard SR. Figures 4
and 5a contain curves of DA corresponding to ρ⊥, (21),
and ρ′

⊥ (22). The arising 3-hump shape of DA for ρ⊥ dras-
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Fig. 4. a The curves of ϕT,mod
ρ (x, 1GeV2): Solid lines correspond to the best fits for the moments determined (see Table 1);

the dashed line on the left figure corresponds to the B&B curve (which fits only 〈ξ2〉Tρ ≈ 0.27). b The r.h.s. of (16) SRT
ρ (x, M2)

in x. Different lines here correspond to different values of the Borel parameter M2 = 0.7–0.9GeV2

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

x

(a)
'T
�0(x)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

x

(b)
'T
� (x;M

2

0
)

Fig. 5. a The curve of ϕT,mod
ρ′ (x, 1GeV2) as a function of x. b The r.h.s. of (16) SRT

ρ (x, M2
0 ) as a function of x. Solid and

dashed lines here correspond to different values of the nonlocality parameter λ2
q = 0.4–0.5GeV2 with fixed value of the Borel

parameter M2
0 = 0.8GeV2

tically differs from the one obtained in [4] and from the
one obtained in chiral effective theory [25].

This difference mainly appears due to the higher mo-
ments, N = 4, 6, 8, involved in the consideration. Nev-
ertheless, the hump shape is not an artifact of the GP
expansion series truncation. These models really contain
only three first GPs; meanwhile, it is enough to reproduce
all four moments up to N = 8. Moreover, an addition-
ally smoothed5 r.h.s. of the NLC SR (16) qualitatively
demonstrates the same behavior in x (at admissible M2)
as the model DA; compare Figs. 4a,b. The stability of the
DA shape with respect to the variation of ansatz is also
checked. To this end, we show in Fig. 5b the same r.h.s. of
(16) as in Fig. 4b, but with different values of the single
ansatz parameter λ2q = 0.4–0.5GeV2 at the fixed value
M2

0 = 0.8GeV2.
Inverse moments of DAs often appear in perturbative

QCD predictions for exclusive reactions. The estimates for
important 〈x−1〉M moments obtained from the model DAs
are presented here6:

5 A certain smoothing of some δ-functions in the r.h.s. of the
SR (see AppendixB) is not important

6 The upper error +0.4 in (24) corresponds to an overesti-
mate 〈ξ2〉 = 0.329 from the “mixed” SR

〈x−1〉ρ ≡
∫ 1

0

ϕTρ (x, 1GeV2)
x

dx

=

{
4.15+0.4−0.1 (here),
3.6 (B&B model),

(24)

〈x−1〉ρ′ ≡
∫ 1

0

ϕTρ′(x, 1GeV2)
x

dx = 2.57 ± 0.20

(here), (25)

〈x−1〉b1 ≡
∫ 1

0

ϕTb1(x, 1GeV2)
x

dx = 2.48 ± 0.20

(here). (26)

It is useful to construct an independent SR for these in-
verse moments to verify the DA models (21), (22) and
(23). Namely, the weighted sum C(M2) of these moments,

C(M2) ≡ 〈x−1〉ρ + 〈x−1〉ρ′

(
fTρ′

fTρ

)2

e−(m2
ρ′ −m2

ρ)/M
2

+ 〈x−1〉b1
(
fTb1
fTρ

)2

e−(m2
b1

−m2
ρ)/M

2

, (27)
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Fig. 6. C(M2) as a function of M2 (solid line) determined
by (27) and integrating over x (15) in comparison with the
l.h.s. of (28) (long-dashed line). The dotted line corresponds
to 〈x−1〉ρ = 4.15; whereas the dashed line corresponds to the
l.h.s. of (28) with upper values of corresponding moments

can be obtained by integrating the r.h.s. of the “mixed”
NLC SR (15) with the weight 1/x. A comparison of the
function C(M2) with the corresponding combination of
model estimates (24), (25) and (26) obtained in different
kinds of NLC SRs (mainly from the “pure” ones) leads to
the approximate equation

4.15 + 2.57

(
fTρ′

fTρ

)2

e−(m2
ρ′ −m2

ρ)/M
2

+2.48

(
fTb1
fTρ

)2

e−(m2
b1

−m2
ρ)/M

2

≈ C(M2), (28)

illustrated in Fig. 6.
As a result, one can conclude to the following.

(1) The “mixed” NLC SR is highly sensitive to b1- and
ρ′-meson contributions; the difference in the behavior of
C(M2) (solid line) and in the ρ-contribution alone (dotted
line) illustrates this point.
(2) The curve C(M2) lies between the mean and upper
estimates for the l.h.s. of (28), so it is in reasonable agree-
ment with the estimates (24), (25) and (26). It also demon-
strates an overestimation of the DA moments in the
“mixed” SR as compared to that obtained from the “pure”
one.

7 DA models
and the B → ρeν decay form factors

The new DA shapes result in different pQCD predictions
for exclusive reactions with the ρ-meson. As an example,
we re-estimate the form factors V (t), A1,2(t) correspond-
ing to the transition matrix element 〈ρ, λ|(V − A)µ|B〉 of
the process B → ρeν, in the framework of the light-cone
SR approach [26]. That was done earlier by Ball and Braun
in [27,28] on the base of DAs from [4]. Thus, to estimate
the influence of the new nonperturbative input presented

in the previous sections, we have used the LC SR in the
leading twist approximation (cf. [27]). Just as in the case of
the LC expansion for the transition amplitude γ∗γ → π0,
one might expect a high sensitivity to the end-point be-
havior of the DAs, as they enter into convolution integrals
like 〈x−1〉M estimated in (24).

However, there are some essential differences which ef-
fectively soften our expectations. First, the DAs also enter
into the “phenomenological” side of the SR in the “con-
tinuum” contribution of higher excited states in the chan-
nel with B-meson quantum numbers. This, actually, is a
specific feature of any LC SR. By subtracting the “contin-
uum”, one actually obtains “infrared safe quantities” like∫ 1
ε

dxϕ(x)/x where ε � (m2
b − t)/(sB0 − t), mb � 4.8GeV,

and sB0 � 34GeV2 is the continuum threshold in the B-
channel7 as defined from the 2-point QCD SRs for the B-
meson decay constant fB (see [29]). For t ≈ 0, ε � 0.5–0.6
and the LC SR should not be so sensitive to the end-point
region x ∼ 0. Obviously, the end-point region becomes im-
portant for higher momentum transfers t. However, for t ≥
20GeV2 the LC expansion would hardly make sense. The
second factor which eventually decreases the importance
of the end-point region is connected with the standard
Borel transformation of the SR with respect to the virtual-
ity of the B-meson current: −p2B → M2

B . The correspond-
ing contribution from the coefficient function produces a
standard suppression exponent: exp(x̄(t−m2

b)/xM
2
B). Nu-

merically, it turned out to be less important.
We have treated the LC SRs using the same input pa-

rameters and the same procedure of extracting the phys-
ical form factors as in [27]. However, if one tries to fix
the onset of the “continuum” by hand to the value sB0 �
34GeV2 dictated by the 2-point SRs for fB , one encoun-
ters inadmissible uncertainties in the determination of the
form factors when using our new nonperturbative input
DAs. To get a stable SR, one is forced to allow a higher
value for the sB0 parameter.

Below, the form factor values are written at a zero mo-
mentum transfer (t = 0) as compared with B&B results:

V (0) =

{
0.37(1) (here [s0 = 50GeV2], χ2 ≈ 0.4),
0.35(2) ([27] [s0 = 34GeV2], χ2 ≈ 3.4),

A1(0) =

{
0.283(4) (here [s0 = 45GeV2], χ2 ≈ 0.1),
0.27(1) ([27] [s0 = 34GeV2], χ2 ≈ 1.1),

A2(0) =

{
0.30(1) (here [s0 = 50GeV2], χ2 ≈ 0.2),
0.28(1) ([27] [s0 = 34GeV2], χ2 ≈ 1.1).

(29)

Our form factors are slightly higher than those in [27]
and possess a better accuracy (compare χ2 in (29)). The
difference becomes more pronounced for a large value of
the momentum transfer t, (m2

b − t ∼ O(mb)). This is not
surprising due to the higher sensitivity to the end-point
behavior of the input DA in this region. The form factors
presented are determined with new “optimal” thresholds
sB0 providing a few times better processing accuracy. Note

7 As we shall see below, the LC SRs “prefer” a higher value
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Fig. 7. Form factor A1(t); the solid line corresponds to our
processing of LC QCD SR, the dashed line to processing fol-
lowing the B&B formulas ([27]) (the bars in the figure show
the errors of the B&B calculations)

that the parameters of the usual “pole” parameterization
of the form factors change significantly as compared to
that in [27], e.g.,

A1(t) =
0.283

1 − 0.157(t/m2
B) − 0.837(t/m2

B)2

The important form factor A1(t) (solid line) increases
about 5–10% in comparison with the B&B result (the bars
in the figure show the errors of the B&B calculations),
with an optimal threshold sB0 � 45GeV2.

8 Conclusion

Let us summarize the main results of this paper.
(1) We construct NLC SRs for DA for each P -parity chan-
nel, based on the properties of the duality transformation.
The negative parity NLC SR for transversely polarized ρ-,
ρ′-mesons works rather well and allows us to estimate the
2nd, 4th, 6th, and 8th moments of the leading twist DAs.
The positive parity SR for the transversely polarized b1-
meson can provide only the value of the b1-meson lep-
ton decay constant, fTb1 . It should be emphasized that an
analogous evaluation of the moments within the standard
QCD SR approach is impossible.
(2) Results of processing different NLC SRs of the “pure”
(see Figs. 1b, 2b, 3b) and “mixed” (see Figs. 1a, 2a, 3a)
parity are compared, and a reasonable agreement is found.
The “mixed” SR in the standard version admits merely a
window of possible values of the second moment 〈ξ2〉 (see,
e.g., [4]); the position of the window is corrected here and,
as a result, agrees with the NLC SR results presented in
Table 1.
(3) The models for the leading twist DAs of the ρ⊥- and
ρ′

⊥-mesons, (21) and (22), and of the b⊥
1 -meson, (23), are

suggested. The shape of a new ρ⊥-meson distribution (see
Fig. 4a) drastically differs from that obtained by Ball and
Braun [4] only on the basis of the value a2 = 0.2. The
latter estimate is discussed in Sect. 5.

(4) We estimate important integrals appearing in pertur-
bative QCD predictions for different exclusive reactions,

〈x−1〉M ≡
∫ 1

0

ϕTM (x)
x

dx

in (24)–(26), based on our results for the DA shapes. We
check the self-consistency of these results by comparing
them with those obtained from an independent “mixed”
QCD SR for the inverse moment 〈x−1〉M and find agree-
ment.
(5) Form factors of the process B → ρeν, V (t), A1,2(t),
where t is the momentum transfer, are also re-estimated
in the framework of the light-cone SR approach [27] on the
basis of the new model for the ρ-meson DAs; the results are
slightly higher and have uncertainties a few times smaller
than those obtained by Ball and Braun.

Finally, we can conclude that the nonlocal condensate
QCD SR approach to the distribution amplitudes is self-
consistent and gives reliable results. An open problem of
this approach is to determine well-established models of
the distribution functions fΓ (ν) from the theory of the
nonperturbative QCD vacuum. First direct attempts to
calculate quark NLC have been done in lattice simulations
in [21]. The “short distance” correlation length of NLC
has also been extracted later in [22]; it turns out to be
reasonably close to the value of 1/λq and confirms the
validity of our Gaussian NLC model.
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A Decomposition of rank-4 tensor Πµν;αβ
(N)

Now follow expressions that are made use of in this article:

Pµν;αβ
1 ≡ 1

2q2
[
gµαqνqβ − gναqµqβ

−gµβqνqα + gνβqµqα
]
,

(A.1)

Pµν;αβ
2 ≡ 1

2
[
gµαgνβ − gµβgνα

]− Pµν;αβ
1 , (A.2)

Qµν;αβ
1 ≡ 1

2(qz)
[
gµαqνzβ + gνβqµzα

− gµβqνzα − gναqµzβ
]
, (A.3)

Qµν;αβ
3 ≡ 1

2(qz)
[
gµαzνqβ + gνβzµqα

−gµβzνqα − gναzµqβ
]
,

(A.4)
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Qµν;αβ
z ≡ q2

2(qz)2
[
gµαzνzβ + gνβzµzα

−gµβzνzα − gναzµzβ
]
,

(A.5)

Qµν;αβ
q ≡ 1

2(qz)2
(
qαzβ − qβzα

) (
qµzν − qνzµ

)
. (A.6)

gµαzνzβPµν;αβ
1 ≡ Pµz;µz

1 = −Pµz;µz
2 =

(qz)2

q2
,

Qµz;µz
1 = Qµz;µz

3 = Qµz;µz
z = Qµz;µz

q = 0, (A.7)

qµqαzνzβPµν;αβ
1 ≡ P qz;qz

1 = Qqz;qz
1 = Qqz;qz

3 = −Qqz;qz
q

= − (qz)2

2
,

P qz;qz
2 = Qqz;qz

z = 0. (A.8)

Let us write down the parameterization of matrix elements
of a composite tensor current operator, see, e.g., [28]:

〈0 | d̄(z)σµνu(0) | ρ⊥(p, λ)〉
∣∣∣
z2=0

= ifTρ⊥

[
(εµ(p, λ)pν − εν(p, λ)pµ)

∫ 1

0
dxϕTρ (x)eix(zp)

+(εµ(p, λ)zν − εν(p, λ)zµ) p2
∫ 1

0
dxV1(x)eix(zp)

+(pµzν − pνzµ) (ε(p, λ)z)p2
∫ 1

0
dxV2(x)eix(zp)

]
,

(A.9)

〈0 | d̄(z)σµνu(0) | b1(p, λ)〉
∣∣∣
z2=0

= fTb1

[
εµναβε

α(p, λ)pβ
∫ 1

0
dxϕb1(x)e

ix(zp)

+εµναβε
α(p, λ)zβp2

∫ 1

0
dxU1(x)eix(zp)

+εµναβp
αzβ(ε(p, λ)z)p2

∫ 1

0
dxU2(x)eix(zp)

]
. (A.10)

Here we decode our shorthand notation used in Sect. 2:

v0 ≡ |fTρ⊥ |2〈xN 〉ρ⊥ , v1 ≡ |fTρ⊥ |2〈−iNxN−1〉V1 ,

v2 ≡ |fTρ⊥ |2〈−N(N − 1)xN−2〉V2 , u0 ≡ |fTb⊥ |2〈xN 〉b⊥ ,

u1 ≡ |fTb⊥ |2〈−iNxN−1〉U1 ,

u2 ≡ |fTb⊥ |2〈−N(N − 1)xN−2〉U2

(with 〈f(x)〉U ≡ ∫ 10 dxf(x)U(x)). In the general case, the
whole system of equations for different twist DA contri-
butions is of the following form:

Π−(q2, qz)
2(qz)Nq2

= −v0 + u1 + u2,
K1(q2, qz)
2(qz)Nq2

= −v1 − u2,

Kz(q2, qz)
2(qz)Nq2

= +u2, (A.11)

Π+(q2, qz)
2(qz)Nq2

= +u0 + u1 + u2,
K3(q2, qz)
2(qz)Nq2

= −u1 − u2,

Kq(q2, qz)
2(qz)Nq2

= v2 − u2. (A.12)

B Expressions for nonlocal contributions
to SR

To construct SR for distribution amplitudes, it is useful
to parameterize NLC behaviors by the “distribution func-
tions” [7,8,13,14] à la α-representation of the propagators,
e.g., fS(α) for the scalar condensate MS(z2)8:

MS

(
z2
)
= 〈q̄(0)q(0)〉

∫ ∞

0
eαz

2/4fS(α)dα,

where ∫ ∞

0
fS(α)dα = 1,

∫ ∞

0
αfS(α)dα =

λ2q
2
, (B.1)

and for the vector condensate Mµ
V (z2),

Mµ
V (z) ≡ 〈q̄(0)γµq(z)〉 = −izµ

AS

4

∫ ∞

0
eαz

2/4fV (α)dα,

where ∫ ∞

0
fV (α)dα = 0. (B.2)

Here and in the following we take quark and gluon fields
in the fixed point gauge, zµAµ(z) = 0, where the path-
ordered exponential E(0, z) = 1. The Mµν (M̃µν) appear-
ing in the SR quark–gluon–quark NLC,

Mµν(y, z) ≡ 〈q̄(0)γνÂµ(z)q(y)〉
= (yµzν − gµν(zy)) · MT1

+ (zµzν − gµνz
2) · MT2 + · · · , (B.3)

M̃µν(y, z) ≡ 〈q̄(0)γν(γ5)Âµ(z)q(y)〉
= εµνρσzρyσ · MT3 + · · · , (B.4)

can be decomposed in form factors MT1-T3, where the
tensors in front of them satisfy the gauge condition zµMµν

(M̃µν) = 0 (since zµÂµ(z) = 0). The NLC MT1-T3 can be
parameterized by a triple integral representation:

MTi(z2, y2, (z − y)2)

= ATi

∫ ∞

0
e(α1z

2/4+α2y
2/4+α3(z−y)2/4)

×fi(α1, α2, α3)dα1dα2dα3, (B.5)

where

ATi =
{

−3
8
AS ,

1
2
AS ,

3
8
AS

}
,

8 In deriving these sum rules we can always make a Wick
rotation, i.e., we assume that all coordinates are Euclidean,
z2 < 0
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and
AS =

8π
81

〈√αsq̄(0)q(0)〉2.
The function fS(α) and other similar functions fΓ (α) de-
scribe distributions of vacuum fields in virtuality α for
every type (Γ ) of NLC. The convolutions ∆ΦΓ (x,M2)
of the distribution functions fΓ and coefficient functions
completely determine the r.h.s. of the SRs, so ∆ΦΓ de-
pends on the model of the fΓ . For the vacuum distribution
functions fΓ (α), we use the set of the simplest ansatzes

fS(α) = δ
(
α − λ2q/2

)
,

fV (α) = δ′ (α − λ2q/2
)
, (B.6)

fT1,2,3(α1, α2, α3) = δ
(
α1 − λ2q/2

)
δ
(
α2 − λ2q/2

)
× δ

(
α3 − λ2q/2

)
. (B.7)

Their meaning and relation to the initial NLCs have been
discussed in detail in [6,7]. The contributions ∆ΦΓ (x,M2)
to the r.h.s. of SR, corresponding to these ansatzes, are
shown below. The limit of these expressions to the stan-
dard (local) contributions ϕΓ (x,M2), λ2q → 0, ∆ΦΓ (x,
M2) → ∆ϕΓ (x,M2) are also written for comparison.
Hereafter ∆ ≡ λ2q/(2M

2), ∆̄ ≡ 1 − ∆:

∆ΦS
(
x,M2)

=
AS

M4

18
∆̄∆2 (B.8)

× {θ (x̄ > ∆ > x) x̄ [x + (∆ − x) ln (x̄)] + (x̄ → x)
+ θ(1 > ∆)θ

(
∆ > x > ∆̄

) [
∆̄ + (∆ − 2x̄x) ln(∆)

]}
,

∆ϕS
(
x,M2) =

AS

M4 9 (δ(x) + (x̄ → x)) ,

∆ΦV
(
x,M2) =

AS

M4 (xδ′ (x̄ − ∆) + (x̄ → x)) , (B.9)

∆ϕV
(
x,M2) =

AS

M4 (xδ′ (x̄) + (x̄ → x)) ,

∆ΦT1

(
x,M2)

= −3AS

M4 θ(1 > 2∆)
{
[δ(x − 2∆) − δ(x − ∆)]

(
1
∆

− 2
)

+ θ(2∆ > x) · θ(x > ∆)
x̄

∆̄

[
x − 2∆
∆∆̄

]}
+(x̄ → x) , (B.10)

∆ϕT1

(
x,M2) =

3AS

M4 (δ′ (x̄) + (x̄ → x)) ,

∆ΦT2

(
x,M2) =

4AS

M4 x̄θ(1 > 2∆)

×
{
δ(x − 2∆)

∆
− θ(2∆ > x)θ(x > ∆)

×1 + 2x − 4∆
∆̄∆2

}
+ (x̄ → x) , (B.11)

∆ϕT2

(
x,M2) = −2AS

M4 (xδ′ (x̄) + (x̄ → x)) ,

∆ΦT3

(
x,M2) =

3AS x̄

M4∆̄∆
× {θ(2∆ > x)θ(x > ∆)θ(1 > 2∆)

×
[
2 − x̄

∆̄
− ∆

∆̄

]}
+ (x̄ → x) , (B.12)

∆ϕT3

(
x,M2) =

3AS

M4 (δ (x̄) + (x̄ → x)) ,

∆ΦG
(
x,M2) =

〈αsGG〉
24πM2 (δ (x − ∆) + (x̄ → x)) ,

(B.13)

∆ϕG
(
x,M2) =

〈αsGG〉
24πM2 (δ (x̄) + (x̄ → x)) ,

∆Φ′
G

(
x,M2) =

〈αsGG〉
6πM2

×θ (∆ < x) θ (x < 1 − ∆)
1 − 2∆

, (B.14)

∆ϕ′
G

(
x,M2) =

〈αsGG〉
6πM2 .

For quark and gluon condensates, we use the standard
estimates [30]

〈√αsq̄(0)q(0)〉 ≈ (−0.238GeV)3,
〈αsGG〉

12π
≈ 0.001GeV4

and

λ2q =
〈q̄ (igσµνGµν) q〉

2〈q̄q〉 = 0.4 ÷ 0.5GeV2

normalized at µ2 ≈ 1GeV2.
As regards expressions for the perturbative spectral

density, we have radiative corrections reach 10% of the
Born result at s ∼ 1GeV2. Now

ρpertT (x, s) =
3

2π2
xx̄

{
1 +

αs(µ2)CF

4π

(
2 ln

[
s

µ2

]
+ 6

−π2

3
+ ln2(x̄/x) + ln(xx̄)

)}
. (B.15)

Here µ2 ∼ 1GeV2 corresponds to the average value of the
Borel parameter M2 in the stability window; αs

(
1GeV2)

≈ 0.52. We also use the “mixed” perturbative spectral
density suggested in [31] in the “mixed” SR:

ρmixedT (x, s; sTρ , s
T
b )

≡ ρpertT (x; s)
1
2
[
θ
(
sTρ − s

)
+ θ

(
sTb − s

)]
. (B.16)

C Definition of χ2 in the sum rules

Let us discuss the definition of χ2 for the SR case. We
have here the function F (M2, s), and the problem is to
find the best value s0, such that F (M2, s0) is the most
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close to a constant value for M2
− ≤ M2 ≤ M2

+ (values
of M2

± are known and fixed from standard constraints of
QCD SR, see [30,8]). We define the function χ2(s) for the
curve F (M2, s) with M2 ∈ [

M2
−,M2

+
]

in the following
manner:

χ2(s) ≡ 1
(N − 1)ε2

N∑
k=0

[
F
(
M2

− + kδ, s
)

− 1
N + 1

N∑
k=0

F
(
M2

− + kδ, s
)]2

, (C.1)

where δ = (M2
+ − M2

−)/N , N � 10, and ε is of an order
of the last decimal digit in F (M2, s) we are interested in
(in the case of decay constant fρ ≈ 200 MeV, ε ≈ 1 MeV;
in the case of the second moment 〈ξ2〉ρ ≈ 0.25, ε ≈ 0.01).
Then, if we obtain χ2(s0) ≈ 1, this tells us that the mean
deviation of F (M2, s0) from a constant value in the region
[M2

−,M2
+] is about ε. To find the minimum value of χ2 and

the corresponding s0, we used the code Mathematica.

References

1. V.L. Chernyak, A.R. Zhitnitsky, JETP Lett. 25, 510
(1977); V.L. Chernyak, A.R. Zhitnitsky, V.G. Serbo, JETP
Lett. 26, 594 (1977); Stanley J. Brodsky, G. Peter Lep-
age, Phys. Lett. B 87, 359 (1979); A.V. Efremov, A.V.
Radyushkin, Phys. Lett. B 94, 245 (1980)

2. V.L. Chernyak, A.R. Zhitnitsky, Nucl. Phys. B 201, 492
(1982); B 214, 547(E) (1983); Phys. Rept. 112, 173 (1984)

3. J. Govaerts, L.J. Reinders, F. de Viron, J. Weyers, Nucl.
Phys. B 283, 706 (1987)

4. Patricia Ball, V.M. Braun, Phys. Rev. D 54, 2182 (1996)
5. Patricia Ball, V.M. Braun, Y. Koike, K. Tanaka, Nucl.

Phys. B 529, 323 (1998)
6. S.V. Mikhailov, A.V. Radyushkin, JETP Lett. 43, 712

(1986); Sov. J. Nucl. Phys. 49, 494 (1989)
7. S.V. Mikhailov, A.V. Radyushkin, Phys. Rev. D 45, 1754

(1992); A.P. Bakulev, A.V. Radyushkin, Phys. Lett. B
271, 223 (1991)

8. A.P. Bakulev, S.V. Mikhailov, Phys. Lett. B 436, 351
(1998)

9. A.V. Radyushkin, Talk given at ICTP Conference on Per-
spectives in Hadronic Physics, Trieste, Italy, 12–16 May,
1997 [hep-ph/9707335], pp. 1–10

10. V.M. Braun, I.E. Filyanov, Z. Phys. C 44, 157 (1989)
11. N.G. Stefanis, W. Schroers, H.C. Kim, Phys. Lett. B 449,

299 (1999)
12. A. Schmedding, O. Yakovlev, Phys. Rev. D 62, 116002

(2000)
13. A.V. Radyushkin, in Workshop on Continuous Advances in

QCD, Proceedings Workshop, Minneapolis, February 18–
20, 1994 (University of Minnesota, Minneapolis, 1994), pp.
238–248

14. A.P. Bakulev, S.V. Mikhailov, Z. Phys. C 68, 451 (1995);
Mod. Phys. Lett. A 11, 1611 (1996)

15. A.V. Radyushkin, R.T. Ruskov, Nucl. Phys. B 481, 625
(1996)

16. A.P. Bakulev, S.V. Mikhailov, Eur. Phys. J. C 17, 129
(2000)

17. S.V. Mikhailov, Phys. Atom. Nucl. 56, 650 (1993)
18. A.G. Grozin, Int. J. Mod. Phys. A 10, 3497 (1995)
19. V.M. Belyaev, B.L. Ioffe, Sov. Phys. JETP 57, 716 (1983);

A.A. Ovchinnikov, A.A. Pivovarov, Sov. J. Nucl. Phys. 48,
721 (1988); A.A. Pivovarov, Bull. Lebedev Phys. Inst. 5,
1 (1991)

20. M.V. Polyakov, C. Weiss, Phys. Lett. B 387, 841 (1996);
A.E. Dorokhov, S.V. Esaibegian, S.V. Mikhailov, Phys.
Rev. D 56, 4062 (1997)

21. M. D’Elia, A. Di Giacomo, E. Meggiolaro, Phys. Rev. D
59, 054503 (1999); E. Meggiolaro, Nucl. Phys. Proc. Suppl.
83, 512 (2000)

22. H.G. Dosch, M. Eidemüller, M. Jamin, E. Meggiolaro,
JHEP 07, 023 (2000)

23. D.E. Groom et al., Eur. Phys. J. C 15, 1 (2000)
24. D. Becirevic et al., Nucl. Phys. Proc. Suppl. 73, 222 (1999);

[hep-lat/9809129]
25. M.V. Polyakov, Nucl. Phys. B 555, 231 (1999)
26. A.P. Bakulev, S.V. Mikhailov, R. Ruskov, in Heavy Quark

Physics, Proceedings 5th International Workshop, Dubna,
Russia, 5–9 April 2000, edited by M.A. Ivanov, V.E.
Lyubovitskij, E. Lipartia (Joint Institute for Nuclear Re-
search, Dubna, 2000), pp. 31–35

27. Patricia Ball, V.M. Braun, Phys. Rev. D 55, 5561 (1997)
28. Patricia Ball, V.M. Braun, Phys. Rev. D 58, 094016 (1998)
29. T.M. Aliev, V.L. Eletsky, Sov. J. Nucl. Phys. 38, 936

(1983); E. Bagan, Patricia Ball, V.M. Braun, H.G. Dosch,
Phys. Lett. B 278, 457 (1992)

30. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys.
B 147, 385 (1979), 448, 519

31. V.M. Belyaev, A. Oganesian, Phys. Lett. B 395, 307 (1997)


